نگاشتهای حافظ حاصلضرب صفر روی جبرهای باناخ
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی
- author جعفر سلطانی فارسانی
- adviser رسول نصر اصفهانی سعید مقصودی
- publication year 1389
abstract
یک نگاشت خطی t از یک جبر باناخ َ به جبر باناخ إ حافظ حاصلضرب صفر است هرگاه برای هر a,b در a بافرض ab=0 داشته باشیم t(a)t(b)=0 . هدف این پایان نامه بررسی این پرسش است که آیا هر نگاشت پوشا و پیوسته حافظ حاصلضرب صفر یک همریختی وزن دار است؟ نشان میدهیم که پاسخ این سئوال در مورد کلاس بزرگی از جبرهای باناخ شامل جبرهای گروهی مثبت است. روش ما شامل در نظر گرفتن یک نگاشت دو خطی ? از a×a به توی x است(برای فضای باناخ دلخواه x )با این خاصیت که برای هر a,b در a وهر µ در بستار (d(a نسبت به توپولوژی عملگری قوی داریم: ?(aµ,b) = ?(a,bµ که در آن (d(a زیر جبری از جبر ضربگری a تولید شده توسط عناصر توان- کراندار دوگانه است. در انتها به بررسی مشتقاتی از بین حاصلضربهای صفر می پردازیم و از نتایج به دست آمده در بخش های ابتدایی برای مشخص کردن مشتقاتی از این جبرهای باناخ می پردازیم. بدین منظور مفهوم "مشتقات تعمیم یافته" را معرفی میکنیم. نشان میدهیم تحت شرایط مناسب , یک عملگر خطی پیوسته میتواند یک مشتق تعمیم یافته باشد. به علاوه شرایطی را معرفی میکنیم که تحت آنها یک مشتق تعمیم یافته به یک مشتق تبدیل میشود.
similar resources
نگاشتهای نگهدارنده جفتهای عملگری باناخ روی جبرهای عملگری
فرض کنید $mathcal{B(X)}$ جبر شامل تمام عملگرهای خطی کراندار روی فضای باناخ $mathcal{X}$ و $phi:mathcal{B(X)}longrightarrow mathcal{B(X)}$ یک نگاشت جمعی دوسویی باشد که جفت عملگری باناخ را از دو طرف حفظ می کند. در این مقاله، نشان می دهیم که به ازای هر $A in mathcal{B(X)}$ و $x in mathcal{X}$، اسکالرهای $alpha , ...
full textنگاشتهای خطی حافظ طیف بین جبرهای باناخ
کاپلانسکی در سال 1970 مساله زیر را مطرح کرد: فرض کنید a و b جبرهای باناخ مختلط نیم ساده باشند و t یک نگاشت خطی یکدار حافظ طیف از a بروی b باشد. آیا t یک همریختی جردن است؟ در این پایان نامه ثابت می کنیم که مساله کاپلانسکی برای کلاس خاصی از جبرهای باناخ جواب مثبت دارد. ثابت می کنیم که هر نگاشت خطی یکدار حافظ ایده الهای چپ ماکزیمال از یک c-ستار جبر بروی c-ستار جبر یکدار بطور محض نامتناهی یک همریخ...
15 صفحه اولنگاشت های حافظ ضرب صفر روی جبرهای باناخ
هدف اول این پایان نامه دسته بندی نگاشت های حافظ ضرب صفر روی جبر های باناخ می باشد. فرض می کنیم a یک جبر باناخ نیم ساده دارای ستون ناصفر، b یک جبر باناخ یکدار و t: a ? b یک نگاشت خطی دوسوئی حافظ ضرب صفر باشد. می دانیم هر همریختی و یا حاصل ضرب هر همریختی در یک عنصر مرکزی وارون پذیر ضرب صفر را حفظ می کند. سوالی که مطرح می شود این است که آیا هر نگاشت حافظ ضرب صفر نیز به این صورت نوشته ...
نگاشتهای پوشای ضربی حافظ طیف بین جبرهای باناخ جابه جایی
فرض می کنیم t نگاشتی پوشا از جبر باناخ و جابه جایی نیم ساده واحددار a به روی جبر باناخ جابهجایی واحددار b باشد، که عضو واحد را حفظ می کند و برای هر ?(t(f)t(g))??(fg),g.f?a. در این صورت b نیم ساده است و tیکریختی است. شرط پوشایی t لازم است. به عنوان مثال نگاشتی غیرخطی و غیر ضربی t را از c*-جبر جابه جایی به توی خودش وجود دارد که عضو واحد را حفظ می کند و برای هر f و g در دامنه تعریفش، ?(tftg)=?(fg)...
15 صفحه اولنگاشتهای خطی بین جبرهای باناخ که حافظ ویژگیهای طیفی اند
ابتدا نشان میدهیم نگاشت خطی پوشا و حافظ طیف بین جبرهای فون نیمان باید یک همریختی جردن باشد نتیجه دوم در حالی که برای فضاهای باناخ xو y و a=x و b=(y) باشند پاسخ مثبت میدهند نتیجه سوم نشان میدهد که ایزومتری طیفی پوشا بین جبرهای باناخ نیمساده دارای بعد متناهی یک همریختی جردن است/
جبرهای باناخ انقباض پذیر
فرض کنید یک جبر باناخ باشد. ما نشان می دهیم که اگر یک ایده ال انقباض پذیر ازیک جبر باناخ باشد آنگاه برقرار است. سپس وجود یک خود توان می نیمال مرکزی را در یک جبر باناخ انقباض پذیرکه یک تابعک ضربی نا صفر روی آن موجود باشد ثابت می کنیم. همچنین مفهومb- انقباض پذیری و یکی از فرم های معادل آن را معرفی می کنیم و با مثالی نشان می دهیم که b- انقباض پذیری به طور اکید از انقباض پذیری ضعیف تر است.
full textMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023